
The NestedMICA motif inference tool

Thomas A. Down
thomas.a.down@googlemail.com

Version 0.8.0 [20070425]

Abstract

NestedMICA is a sensitive, scalable, pattern-discovery system, aimed at
finding transcription factor binding sites and similar motifs in biological se-
quence. More discussion of the principles behind NestedMICA, and an evalu-
ation of its sensitivity can be found in a recent paper [?].

If you have any problems or questions about the system, please contact
Thomas Down.

1 Theory

Motif-finding is a long standing problem in sequence bioinformatics. A typical state-
ment of the problem would be “given a set of sequences, which motifs are signifi-
cantly over-represented with respect to a given model of non-functional sequence.”
The choice of non-functional sequence (background) model is an important part of
this question and will be discussed in more detail later. The classical use for motif-
finding software is the detection of transcription factor binding sites in promoter
regions, but there are other interesting functional elements in biological sequences
and elsewhere which can be found by motif-discovery methods.

Motif-finding strategies can be broadly divided into two classes: methods which
rely on exhaustively enumerating a set of motifs (generally using an optimized
data structure such as a suffix tree) then reporting the most frequently occuring,
and methods which find significant motifs by optimizing or drawing samples from
a probabilistic model. Exhaustive enumeration is a good strategy for finding per-
fectly conserved motifs (i.e. every instance is identical), but for typical transcrip-
tion factor binding sites, which often have several weakly constrained positions,
exhaustive enumeration becomes problematic and the results usually have to be
post-processed with some kind of clustering system. NestedMICA is a probabilitic
motif finder, and we will not consider exhaustive enumeration further.

Probabilistic motif-finders treat the supplied sequences as a mixture of ‘interest-
ing’ motifs and ‘non-interesting’ background sequences. This problem has classi-
cally been reduced to a simple case: considering just one motif at a time, model
each sequence with a random background model which may, or may not, contain a

1

single instance of the motif under consideration. This is the zero-or-one occurance
per sequence (ZOOPS) model. It can be easily represented as a hidden Markov
model (figure 1)), and standard techniques such as expectation maximization [?] or
Gibbs sampling [?] can be used to find good sets of model parameters (correspond-
ing to good motif models).

N N

Start End

m5m4m3m2m1

Figure 1: The ZOOPS sequence mixture model

There are two significant concerns about this strategy which NestedMICA tries
to address:

• Real regulatory regions, and most other contexts where interesting motifs can
be found, don’t really contain just a single instance of a single motif. Programs
which use the ZOOPS model work around this by finding the strongest motif
in a set, then scanning for all its instances, masking them out, and re-running
the process on the remaining sequence. This strategy is greedy and it is by
no means clear that its behaviour will be optimal, especially when working
on a system where there is a set of closely related, yet still distinct, motif
types. In an environment where novel transcription factors are created by
gene duplication then diverge to perform a new function, such situations seem
quite probable, and have not yet been well investigated.

• Existing techniques for optimizing or exploring sequence models of this type
tend to be strongly local in nature – they concentrate on regions of the prob-
ability landscape close to their starting point. This is particularly clear for
expectation-maximization methods, which always move in a direction which
increases the likelihood of the model. Sampling strategies don’t strictly have
this limitation, but in practice, crossing the low-likelihood valley between two
high-likelihood peaks is unlikely, often to the point where it becomes vanish-
ingly rare.

1.1 Motif ICA

We treat finding multiple motifs in a set of sequences as a form of independent
component analysis (ICA) problem. In linear ICA, a matrix of observations, X is

2

approximated as a linear mixture, A of some sources, s:

x = As + ν (1)

(where ν is a noise matrix). A classical example is the “cocktail party problem”
where a set of M microphones record different mixtures of the voices of N speakers.
Given samples from these microphones at t timepoints, ICA attempts to factorize
the M × t observation matrix into a N × t source matrix and a M ×N mixing matrix.

It is possible to generalize ICA to any mixing situtation, given a suitable mixing
operator. In the classical case, the mixing operator is simply the addition operator.

In motif ICA, the sources are short sequence motifs (currently, but not neces-
sarily, modeled as position-weight matrices [?]), while the observations are larger
sequences. There are a number of interpretations of the mixing matrix. Currently,
we use a boolean mixing matrix (all coefficients are either 0 or 1), and a given se-
quence is expected to contain a given motif if the relevent mixing coefficient is 1.
The ‘noise’ part of the ICA model represents all the sequence which isn’t modelled
by one of the motifs.

1.2 Nested sampling

Nested sampling is an alternative way of performing probabilistic inference in a
Bayesian framework, proposed recently by John Skilling [?]. It can be considered
to be a Monte Carlo method, since the process is driven forward by a series of
randomly chosen events, but it is quite distinct from the classic Metropolis-Hastings
method, and methods such as Gibbs sampling and slice samplings, which can all
be considered as optimized implementation strategies for Metropolis-Hastings.

Nested sampling is applied to an ensemble of states, which represent possible
solutions to the problem at hand. The ensemble is initialized by sampling uniformly
from the prior distribution, then sorting the states according to their likelihoods. In
nested sampling, Each state in the ensemble is considered to be a representative
of the set of states with similar likelihoods. If the likelihood of each state is drawn
as a contour on the likelihood distribution, we see a nested set of contour lines,
converging towards the peaks of the likelihood distribution. We therefore call the
ordered set of states a nested ensemble. For each cycle of nested sampling, the
least likely state in the ensemble is discarded, and a new state is chosen by sam-
pling uniformly from the prior subect to the constraint that the likelihood of the new
state must be greater than or equal to the likelihood of the discarded state.

In this context, the most exciting property of nested sampling is that, given a rea-
sonably large ensemble, the final sample drawn from a converged nested sampler
can be expected to reflect the global optimum of the likelihood landscape. Moreover,
in cases where more than one globally significant optimum exists, these should be
represented in the sample set in direct proportion to the amount of posterior mass
they represent.

3

1.3 Background models

The background model is an important component of the SMM framework – after
all, it will usually be responsible for modeling the majority of the input sequence!
The simplest strategy – and still a common one – is to treat all non-motif sites as
independent and identically distributed. In HMM terms, this makes the background
model a zeroth-order Markov chain. However experience shows that genomic DNA
sequence, even when apparently totally non-functional, is not a good fit to the i.i.d.
model. The best known deviation is perhaps the dramatic under-representation of
CpG dinucleotides in most parts of vertebrate genomes, but other significant effects
are known. In any case, practical experience shows that motif finders equipped
with naive background models tend to report low-complexity elements rather than
interesting binding sites.

The first obvious improvement is to replace the zeroth order Markov chain with
a first order chain (i.e. the probability of observing a particular symbol at position n
depends on the symbol at position n−1). This model is good at capturing anomalies
like the CpG underrepresentation. The success of first order background models
has led some researchers to investigate higher order models. One investigation of
Markov chain backgrounds can be found in [?]: this concludes that pentanucleotide
frequency tables (i.e. fourth-order background models) are optimal. However, there
are two concerns about this result: firstly, it leaves an open question about what
these high-order correlations in background sequence mean (and why fourth-order
models appear to outperform fifth-order). Also, training a background model gener-
ally requires sequence propoortional to the number of free parameters in the model.
Fifth order models, with 768 parameters, therefore require large amounts of se-
quence. Moreover, it is desirable to train the background model on sequence which
does not contain target motifs, since a fifth order model could easily capture some
information about this motifs, thereby reducing the sensitivity of the motif-finding
process. But it is hard to find large amounts of representative background training
sequence which doesn’t contain interesting motifs.

A different way to generalize the naive background model is to allow several
different classes of sequence, each with its own particular base distribution (which
could be zeroth-order or higher-order). We call these mosaic models, since their
underlying assumption is that genome evolution includes some set of constraints
which act non-uniformly, even on background sequence.

To investigate the benefit of mosaic models, we took a set of human upstream
flanking regions, and split the set in half, using one subset to optimize the back-
ground model parameters and the second subset for testing. Test likelihoods for
a variety of class numbers and Markov chain orders are shown in figure 2. Con-
sidering one class ‘mosaics’ (which are equivalent to uniform background models),
we repeat the previously reported observation that higher order Markov chains are
better models of genomic DNA. However, we also see large increases in likelihood
when moving to larger numbers of mosaic classes. Interestingly, the lines for zeroth-
order and first-order models run almost paralell: this suggests that the benefits of

4

mosaic models are almost orthogonal to the benefits of first-order models. However,
this is not true when moving beyond first-order models.

-14000

-13900

-13800

-13700

-13600

-13500

-13400

-13300

-13200

 0 2 4 6 8 10

Li
ke

lih
oo

d
of

 te
st

 s
eq

ue
nc

es

Mosaic classes

Order 0
Order 1
Order 2

Figure 2: Comparison of mosaic backgrounds

Based on these results, we recommend the use of a four class, first order, mo-
saic background model for most motif-finding applications on mammalian genomic
sequence. In practice, the four classes appear to be:

• A relatively neutral class

• A C+G rich class (CpG islands?)

• Purine rich

• Pyrimidine rich

There are still open questions about the biological significance of the mosaic
classes we have observed.

2 Running NestedMICA

NestedMICA is open source software, released under the GNU Lesser GPL. The
main program is written in Java, but there are a few small pieces of native C code
which are required. The C code is simple and (hopefully) portable, so it should be
possible to run NestedMICA on most modern computer platforms.

The NestedMICA source distribution can be downloaded from

http://www.sanger.ac.uk/Software/analysis/nmica/

5

This distribution includes all the required library code. To compile the Java code,
you’ll need version 1.7.0 or later of the ANT java build tool, which can be down-
loaded from http://ant.apache.org/ .

As of NestedMICA 0.7, a Java 5 runtime environment is required. In general, we
recommend that you use the latest available Java from Sun Microsystems. Initial
benchmarks suggest that Java 6 runtimes run NestedMICA about 10% faster, so
use the latest version if it’s available. Mac OS X is a supported platform, but you’ll
need to run version 10.4.0 (“Tiger”) or later, and separately download the Java 5
packages from Apple. You’ll also need to reconfigure your system to make Java
5 the default version for command-line applications (note that Apple’s Java Prefer-
ences tool doesn’t do this, it only affects programs started via your web browser).
The best way to do this is to add the following lines to the .bashrc file in your home
directory:

export JAVA HOME=/System/Library/Frameworks/JavaVM.framework/
Versions/1.5.0/Home

export PATH=$ {JAVA HOME}/bin:$PATH

2.1 Building and installing NestedMICA

NestedMICA is written in the Java programming language, with a small amount of
C used for performance reasons. On supported platforms, it should be possible to
compile the whole system by typing ant at the command line. If this does not com-
plete cleanly, contact Thomas Down with the complete error message and details
of the platform you’re running on.

Currently supported platforms are Linux and Mac OS X, but other Unix-like plat-
forms may also work, and if not it should be reasonably easy to add support. Note
that we’ve had reports of problems when building on Mac OS with old developer
tools (before gcc version 3.1). If in doubt, please install the latest developer tools.

Once you have compiled NestedMICA successfully, you can either add it directly
to your PATH:

export PATH=/home/thomas/nmica-X.Y.Z/bin:$PATH

or copy it to some other location. If you are packaging NestedMICA or building
it for other users, only the bin , lib , and native subdirectories are required once
NestedMICA has been compiled.

2.2 Basic operation

This section describes a (very) small set of test sequences named micatest100.fa
which are included with the NestedMICA source distribution. The file contains 100
synthetic DNA sequences, each of 50 bases long. The set contains two spiked-in
motifs.

6

The main part of NestedMICA is the motif inference tool, nminfer . You should
be able to recover the two spiked motifs using a command like:

nminfer -seqs micatest100.fa -numMotifs 2
-minLength 4 -maxLength 12 -ensembleSize 50

This runs the motif finding system until the nested sampling process is close to
convergence, then writes the optimal set of motifs to a file named motifs.xms . In
this case, we’re telling nminfer that we expect to find 2 motifs, but setting a fairly
broad range of possible motif lengths.

You can view your discovered motifs using the MotifExplorer tool, available from:

http://www.sanger.ac.uk/Software/analysis/nmica/mxt.shtml

Figure 3: Motifs discovered from the demonstration set.

One word of warning here: the -ensembleSize 50 option is recommended
here in order to get quick results on this simple test data set, but will lead to lower
sensitivity than leaving -ensembleSize at its default value. For normal use, we do
not recommend altering -ensembleSize from its default value.

2.3 Increasing the memory limits

Some Java implementations may, by default, limit NestedMICA’s memory usage to
an unreasonably small value. If NestedMICA is crashing with OutOfMemoryError ,
you can explicity set a new memory limit by setting an environment variable. To set
the memory limit to 500Mb, use:

export NMICA_JVMOPTS=-Xmx500M

As a rough rule-of-thumb, a good memory limit for large datasets is 1Mb of
memory for every 1Kb of input sequence. Note that just because you have allocated
NestedMICA 500Mb of memory using a command like that shown above, it won’t
immediate use all that memory – it just specifies how much memory the program is
allowed to use before exiting.

7

2.4 Background-model options

By default, nminfer will build a background model from the supplied sequences.
The default model is quite simple: a single zeroth order (i.e. mononucleotide fre-
quencies) model for all the input sequences. You can specify more complex models
using the -backgroundOrder and -backgroundClasses options. So to use
a four-class dinucleotide model (which seems to be a good choice for vertebrate
sequences) you could use:

nminfer ... -backgroundOrder 1 -backgroundClasses 4 ...

However, complex background models can take some time to train, and it is
useful to be able to run nminfer multiple times using exactly the same background.
Therefore, we recommend building background models as a separate step, e.g.:

nmmakebg -seqs seqfile.fa -order 1 -classes 4
-out background42.xml

The resulting background model is stored as an XML file which can be inspected
if you want to see the exact parameters that have been chosen. Having built a
background model in this way, you can use it for any motif finding run:

nminfer ... -backgroundModel background42.xml ...

Remember that if you run nminfer in this way, the -backgroundOrder and
-backgroundClasses options will be silently ignored – the background model
architecture is hardwired when the model is trained.

Note: earlier versions of NestedMICA used a different file format for storing
background models. You can convert these old files into the new XML format using
nmconvertbg :

nmconvertbg -in background42.sbg -out background42.xml

2.5 Background model architecture optimization

Our experience suggests that a background model trained with the parameters
-order 1 and -classes 4 is generally a good choice when working with ver-
tebrate genomes. However, genome composition varies between species and it is
likely that other architectures may be better choices in some cases: for example, a
six-class model was used in a recent study of the insect Drosophila melanogaster
[?]. One principled approach to background selection might be to repeat the experi-
ment depicted in figure 2 using sequences from your species of interest. To do this,
take a set of sequences (ideally around 200), then:

nmevaluatebg -seqs seqs.fa -order 1 >eval.dat

8

The nmevaluatebg splits the sequences into two sets – by default it places
50 sequences in the “test” set and the rest in the “training” set. It fits background
models with varying numbers of classes to the training sequences, then calculates
the likelihood of observing the test sequences under the newly-trained model. If
you plot the output using a tool like gnuplot , you should see a plot similar to one
of the lines shown in figure 2. Look for a plateau in this plot: the class number on
the shoulder of the plateau should represent a good trade-off between background
model complexity and fitting the date well.

It is also possible to use nmevaluatebg to compare different values of the
-order parameter, by running the program serveral times then comparing the out-
put. This has a few complications: firstly, you must ensure that the “test” and “train-
ing” sets are the same for all runs. To do this, split the sequences up manually then
use the -trainSeqs and -testSeqs options. Also, it is necessary to compensate
for edge effects: when working with an order 2 background model, NestedMICA
can’t “see” the first two bases of each sequence, therefore the likelihood of the se-
quence set will appear to be higher. You can compensate for this using the -trim
option when testing low-order background models, e.g.:

nmevaluatebg ... -order 0 -trim 2 >order0.dat
nmevaluatebg ... -order 1 -trim 1 >order1.dat
nmevaluatebg ... -order 2 >order2.dat

2.6 Motif-finding options

The nfinfer program has many options. You can see a list of common options by
typing nminfer -help .

2.7 Everyday options

These are options that you’ll use all the time, and are generally well-behaved.
-numMotifs n specifies the number of motifs you want to find (default=1).
-maxLength n the maximum length of motifs to find (default=10).
-minLength n the minimum length of motifs to find (if not specified, a warning

will be printed and this will be set equal to -maxLength).
-seqs filename a FASTA-formated database of sequences to analyse.
-backgroundModel filename the background model to use, normally gener-

ated by running the nmmakebgprogram.
-out filename name of a file to write the final motif set (default motifs.xms)
-sampleFile filename name of a file to write periodic samples during the

motif-finding process. If you run the finder with the option -sampleFile foo ,
it will write sample files foo.1000.xms , foo.2000.xms , etc.

-sampleInterval n number of cycles between sample files (default=1000).

9

-maxCycles n the maximum number of cycles to run the sampler. The pro-
gram will then exit regardless of convergence status. Currently the criteria for de-
ciding when the process has converged are quite conservative, so this option may
be useful.

-ensembleSize n the size of the nested ensemble used to explore the prob-
ability landscape. Larger values improve reproducibility at the expense of speed.
Default behaviour is to set the ensembleSize to 200 for large problems (>= 5 mo-
tifs), but to use larger ensemble sizes when learning less motifs, up to a maximum
of 1000 when learning a single motif. This should give maximum sensitivity under
most circumstances. When learning one or two motifs from a very simple dataset,
you may want to explicitly force a small ensembleSize for performance reasons.

-alphabet (dna|protein) the alphabet of input sequences. Default is DNA.
-revComp allow motifs to occur in either orientation (off by default, slows the

program down by a factor of about 2).
-cluster prefer motifs which occur in clusters. Causes a small slowdown in

training. Currently not sure how helpful this is.

2.8 Advanced options

More complex options, that we’d prefer weren’t there. If you’re interested in these,
it’s probably best to discuss them with Thomas Down.

-mixtureType (binary|flat|logit|weighted) Wierd switch which ef-
fects the interpretation of the mixing matrix. Default is binary , leave it that way
unless you know what you’re doing.

-mixtureUpdate (resample|weakResample|max|queue|random) Strat-
egy for updating the mixing matrix during training. resample is the best in theory
and works well for most problems. weakResample gives better results on large
sets of human promoters. Don’t use any of the others.

-expectedUsageFraction d number between 0.0 and 1.0 giving the prior
belief of motif frequency. Default is 0.5. Try 0.1 if you think motifs are rare, 0.9 is
you think almost all the sequences are likely to contain an instance.

(-counted|-uncounted) switch between a model where a motif can occur
any number of times in a sequence (uncounted), and a more conventional motif-
inference strategy where motif-containing sequences are expected to contain ex-
actly one occurence. Note that the -counted model is slower, and is likely to
become unusably slow with values of -numMotifs greater than about 5. However,
it may be preferred in some situations where sensitivity is paramount. Default is
-uncounted .

2.9 Checkpointing

To minimize the risk of data loss during long runs, NestedMICA can generate check-
point files at regular intervals during the training process. If you want to keep check-
point files, add the following arguments to your nminfer command line

10

-checkpoint mycp -checkpointInterval 1000

Like sample files, checkpoints are automatically numbered with the cycle num-
ber at which they are taken. Unlike samples they files are rather large (typically
several megabytes, increasing rapidly with dataset and nested ensemble size). By
default, nminfer deletes old checkpoints: in the standard configuration only two
checkpoints are kept on disk, so after the third is written, the first will be deleted.
This behaviour can be changed using the -keepCheckpoints option.

To restart from a checkpoint:

nminfer -restartFromCheckpoint mycp.12000.jos
-maxCycles 100000 -sampleFile sample -sampleInterval 10000
-checkpoint mycp2 -checkpointInterval 1000

Note that, while the entire trainer state is restored from the checkpoint file, cur-
rently none of the ‘housekeeping’ options (termination, sampling, and checkpoint-
ing) are, so it is necessary to re-specify them when restarting the checkpoint. This
is potentially useful if you want to continue the training of a run which hasn’t quite
converged for a few extra cycles.

2.10 Multithreaded operation (SMP machines)

If you are running on a multi-processor machine, add the option -threads N to
the nminfer command line, where N is the number of processors in the machine,
or the number of CPUs in a large multiprocessor server that you want to devote to
nminfer . This mode of operation is quite efficient, usually giving better than 95%
scaling from one to four processors. This option should also work efficiently on large
SMP machines, at least when working with large datasets, but has not been tested
extensively with more than 4 CPUs.

2.11 Distributed operation (clusters, farms, Beowulfs, etc.)

An alternative approach to paralelizing a large nminfer run is distribute the work-
load over multiple nodes. Start nminfer as usual, but add the options:

-distributed -port XXXXX

You may use any port number between 1024 and 65535, but if you are running
multiple nminfer jobs on one cluster, you should give each job a unique port num-
ber. This process will be your master node. Once it has started up, you can run any
number of worker nodes, which will evaluate sub-problems for the master node. To
run a worker node:

nmworker -server YYYYY -port XXXXX

11

Where YYYYY is the name (or IP address) of the master node, and the port
number matches that used to start the master. To remove a worker node from the
cluster you can simply kill the process. It’s fine to add and remove workers at any
point during the run, although there is currently a short (1̃0 seconds) glitch after a
worker dies during which no work will be done, so very rapid worker turnover can
be inefficient. If the nminfer run ends normally, all associated worker nodes will
be sent a shutdown message, but under other circumstances it may be necessary
to kill worker nodes manually.

In NestedMICA 0.7.x, the master node did not perform much computation, and
was restricted to housekeeping tasks. As of NestedMICA 0.8.0, you can optionally
use the master node as an extra compute node. To do this, you should explicitly
specify a -threads option when starting the nminfer process. Depending on the
hardware you are using and the number of worker nodes you have attached, the
optimum value will be either n or n − 1 where n is the number of CPUs in your
computer. Using a value of n will maximize CPU utilization, while a value of n − 1
leaves one CPU core free at all times for housekeeping tasks. If you run a lot of
distributed nminfer processes, it is worth doing some testing to find the optimum
value for your cluster.

2.12 Comparative genomics

If groups of orthologous regulatory regions are available, NestedMICA can take
advantage of the known relationships between species. Unlike phylogenetic foot-
printing and other ‘infinite monkeys’ techniques, comparative NestedMICA does not
consider the alignments of the sequences, but simply assumes that orthologous
regulators are likely to contain similar complements of motifs. In practice, this is im-
plemented by using a single row of the ICA mixing matrix to model all the orthologs.

To run NestedMICA in comparative mode, just add more than one -seqs option
to the nminfer command line. If two sequences in different files share the same
name, they will be treated as orthologues.

There are two options for providing background models in comparative mode. If
only one -backgroundModel switch is present on the command line, that sin-
gle background model will be used for all species. Alternatively, you can train
a separate background model for each species, and specify them with multiple
-backgroundModel switches, e.g.

-seqs human.fa -backgroundModel human.sbg
-seqs mouse.fa -backgroundModel mouse.sbg

If you use multiple background models they must be listed in the same order as
the sequence databases, and there must be exactly equal numbers of sequence
databases and background models. If no background models are supplied, a sepa-
rate background model will be constructed for each supplied sequence file.

If ortholog information is only available for some sequences, that’s fine.

12

There is no limit to the number of species that can be used (except for prac-
tical memory limits). We would expect to see diminishing returns beyond about 4
species, but much more testing is needed to determine the optimal configurations.

2.13 Scanning with motifs

A simple program is supplied to scan a sequence using weight matrices inferred
by NestedMICA. Hits are output in GFF format. This program uses bits-sub-optimal
scoring: this means that the best possible match to a given weight matrix will always
score 0.0, while other sequences will receive negative scores.

Typical usage:

nmscan -seqs seqfile.fa -motifs motifs.xms
-scoreThreshold -5.0 -strand both

3 Using NestedMICA for protein motif discovery

--by Mutlu Do ḡruel, md5@sanger.ac.uk

As of version 0.7.3, NestedMICA is capable of finding motifs in protein se-
quences [?]. For protein analysis, each NestedMICA tool (nminfer , nmevaluatebg ,
nmmakebg, etc.) must be run with the -alphabet protein option. While the un-
derlying principle remains the same as DNA motif finding, some extra care must be
taken during background model training and parameter choice.

3.1 Background optimization and training

Experience suggests that protein sequences are complicated enough to prevent us
from easily saying that a pre-determined number of mosaic classes or background
order would be optimal. Most of the time, training a dedicated background model
for each protein sequence set is needed to maximise performance and sensitivity.

As described in Section 2.5, in order to find a reasonable pair of order and class
number for background creation, it is possible to use a build-in application called
nmevaluatebg. If you divide your data into two parts, you can use nmevaluatebg
in the following way:

nmevaluatebg -trainSeqs proteinsTrain.fa
-testSeqs proteinsTest.fa
-alphabet protein -order 0
-minClasses 1 -maxClasses 7

Unless -trainSeqs and -testSeqs parameters are used, NestedMICA will
randomly use a certain number of sequences from a dataset provided with the

13

-110600

-110500

-110400

-110300

-110200

-110100

-110000

-109900

-109800

-109700

 1 2 3 4 5 6 7

’evalProtein.dat’

Figure 4: Likelihood curve for protein background models with different number of
mosaic classes.

-seqs option. This would not be ideal if, for example, you would like to compare
the likelihood of an order-1 background with a previous run.

While, in principle, using higher orders and larger number of mosaic classes
would fit the data better and better, this will not hold true after a while when there is
no sufficient data to train a more complicated model properly. Generally, it’s a good
idea to pick a class number before the likelihood curve starts to drop, no matter
of it is increasing at a later stage. Figure 4, for example, shows the values of an
nmevaluatebg optimization for a small protein set. In this particular case, choosing
5 or 4 mosaic classes would be a safer option and more optimal.

Having found a good pair of parameters, a background model is trained in a
similar way as described in Section 2.4:

nmakebg -seqs proteins.fa -order 0 -classes 4
-alphabet protein -out proteinbg.xml

14

3.2 Motif finding options

While all user parameters remain the same, a small number of NestedMICA pa-
rameters have different default values for proteins. -ensembleSize is the most
notable one:

When searching for up to 3 motifs, the default behaviour is to set the ensembleSize
to 1500 divided by the number of motifs. When more number of motifs are searched,
it is set automatically to 500, unless there is a user specified value. This parameter
can affect the speed of the program dramatically.

References

[1] Down TA, Hubbard TJP: NestedMICA: sensitive inference of overrepre-
sented motifs in biological sequence . Nucleic Acids Res. 2005, 33:1445–
1453.

[2] Bailey T, Elkan C: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers . In Proceedings of the Second International
Conference on Intelligent Systems for Molecular Biology 1994:28–36.

[3] Thompson W, Rouchka E, Lawrence C: Gibbs Recursive Sampler: finding
transcription factor binding sites . Nucleic Acids Research 2003, 31:358–
3585.

[4] Bucher P: Weight matrix descriptions of four eukaryotic RNA polymerase II
promoter elements derived from 502 unrelated promoter sequences . Jour-
nal of Molecular Biology 1990, 212:563–578.

[5] Skilling J: Nested Sampling [[http://www.inference.phy.cam.ac.uk/bayesys/]].

[6] Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P, Moreau Y: A
higher-order background model improves the detection of promoter regu-
latory elements by Gibbs sampling . Bioinformatics 2001, 17:1113–1122.

[7] Down TA, Bergman CM, Su J, Hubbard TJP: Large scale discovery of pro-
moter motifs in Drosophila melanogaster . PLoS Comp Biol. 2007, 3:e7.

[8] Dogruel M, Down TA, Hubbard TJP: NestedMICA as an ab initio protein motif
finder . Submitted 2007.

15

